四字词语 口号 名人名言 顺口溜 祝福语 短信 教学文档 教学总结 教学反思 考研 自考 企业管理 营销 人力 财务 个人创业 求职指南 厨艺教学 物业 管理文库 谜语

当前位置:得优网教学文章免费教案数学教案九年级数学教案数学教案-指数函数与对数函数的性质及其应用

数学教案-指数函数与对数函数的性质及其应用

    06-21 11:22:21    浏览次数: 478次    栏目:九年级数学教案

标签:初三数学教案,人教版九年级数学教案,北师大九年级数学教案,http://www.deyou8.com 数学教案-指数函数与对数函数的性质及其应用,


数学教案-指数函数与对数函数的性质及其应用由www.deyou8.com收集及整理,转载请说明出处www.deyou8.com
www.deyou8.com

五、   例题

例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

解:∵ y=ax中, a=Л>1

∴ 此函数为增函数

又∵ ﹣0.1>﹣0.5

∴ (Л)(-0.1)>(Л)(-0.5)

例⒉比较log67与log76的大小。

解: ∵ log67>log66=1

          log76<log77=1

         ∴  log67>log76

注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

例⒊ 求y=3√4-x2的定义域和值域。

解:∵√4-x有意义,须使4-x2≥0

即x2≤4,      |x|≤2

∴-2≤x≤2,即定义域为[-2,2]

又∵0≤x2≤4,   ∴0≤4-x2≤4

∴0≤√4-x≤2,且y=3x是增函数

          ∴30≤y≤32,即值域为[1,9]

例⒋ 求函数y=√log0.25(log0.25x)的定义域。

解:要函数有意义,须使log0.25(log0.25x)≥0

      又∵ 0<0.25<1,∴y=log0.25x是减函数

        ∴ 0<log0.25x≤1

        ∴ log0.251<log0.25x≤log0.250.25

        ∴ 0.25≤x<1,即定义域为[0.25,1)

六、   课堂练习

求下列函数的定义域

1.      y=8[1/(2x-1)]

2.      y=log


数学教案-指数函数与对数函数的性质及其应用由www.deyou8.com收集及整理,转载请说明出处www.deyou8.com
www.deyou8.com a(1-x)2 (a>0,且a≠1)

七、   评讲练习

八、   布置作业

第113页,第10、11题。并预习指数函数与对数函数

在物理、社会科学中的实际应用。



数学教案-指数函数与对数函数的性质及其应用由www.deyou8.com收集及整理,转载请说明出处www.deyou8.com

上一页  [1] [2] [3]